Liu Hui (un matemático famoso en la antigüedad) tiene una colección de información completa y detallada.
Introducción básica Nombre chino: Liu Hui: Nacionalidad china: Han Lugar de nacimiento: Ciudad de Zouping, Provincia de Shandong? Fecha de nacimiento: aproximadamente 225 d.C. Fecha de muerte: aproximadamente 295 d.C. Ocupación: Matemático Principales logros: Limpieza del antiguo sistema matemático chino.
Este artículo propone algunas obras representativas, como "Reforma de la Vivienda en Armonía", "Técnica de la Doble Diferencia", etc. :Nueve capítulos de notas aritméticas, clásicos del cálculo insular, logros personales, obras representativas, registros históricos y hechos personales. "Nueve capítulos sobre aritmética" fue escrito a principios de la dinastía Han del Este y contiene 246 métodos para resolver problemas. Está entre los más avanzados del mundo en la resolución de ecuaciones simultáneas, cálculo de cuatro fracciones, cálculo de números positivos y negativos, cálculo del volumen y área de figuras geométricas y muchos otros aspectos. En el cuarto año de Zhenguan en Cao Wei, Liu Hui anotó "Nueve capítulos sobre aritmética". Sin embargo, debido a la solución primitiva y a la falta de pruebas necesarias, Liu Hui proporcionó pruebas complementarias. En estas pruebas se muestran sus aportaciones creativas en muchos aspectos. Fue la primera persona en el mundo en proponer el concepto de decimales, utilizando decimales para representar las raíces cúbicas de números irracionales. En álgebra propuso correctamente los conceptos de números positivos y negativos y las reglas de suma y resta, y mejoró la solución de ecuaciones lineales. En geometría, se propone la "secante", que es un método que consiste en utilizar polígonos regulares inscritos o circunscritos para agotar la circunferencia de un círculo y encontrar el área y la circunferencia de un círculo. Usó tecnología secante para llegar científicamente al resultado de pi = 3,1416. Usó el método de cortar un círculo, cortando un círculo de un círculo con un diámetro de 2 pies conectando un hexágono regular, y luego obtuvo un hexágono regular 12 y un hexágono regular 24... Cuanto más fino cortaba, el regular La diferencia entre el área del polígono y el área del círculo es menor. En sus palabras originales, "Si cortas con cuidado, no perderás mucho. Si cortas de nuevo, no habrá pérdida". Calculó el área de 3072 polígonos y verificó este valor. El método científico para calcular pi propuesto por Liu Hui estableció la posición de liderazgo de China en el mundo durante más de mil años. Liu Hui hizo grandes contribuciones a las matemáticas y propuso la idea de "encontrar números de Hui" entre un sinfín de problemas. Este método es consistente con el método posterior para encontrar aproximaciones de raíces irracionales. No sólo es necesario para el cálculo preciso de pi, sino que también facilita la generación de decimales. En la solución de ecuaciones lineales, creó el método de multiplicación y eliminación mutua, que es más simple que la división directa, que es básicamente consistente con el método de solución actual y propuso el "problema de ecuación indefinida" por primera vez en la historia de los chinos; matemáticas; también estableció el frente de secuencia aritmética. La fórmula de suma de n términos propuso y definió muchos conceptos matemáticos, como potencia (ecuación de área (ecuación lineal), etc.); Liu Hui también propuso muchos juicios correctos generalmente aceptados como requisitos previos para la prueba. La mayoría de sus razonamientos y pruebas son lógicos y rigurosos, basando así los Nueve Capítulos en la Aritmética y sus propias soluciones y fórmulas en la inevitabilidad. Aunque Liu Hui no escribió un sistema autónomo de obras, el conocimiento matemático que utilizó en "Nueve capítulos sobre aritmética" en realidad ha formado un sistema teórico único, que incluye conceptos y juicios, con la prueba matemática como vínculo. Liu Hui propuso en "El arte del corte circular" que "corta finamente y habrá poco daño; corta fuerte y no habrá daño; debe estar en armonía con el círculo sin daño", lo que puede considerarse una obra representativa. de conceptos extremos chinos antiguos. En el libro "Cálculo de islas", Liu Hui seleccionó cuidadosamente 9 preguntas de medición. La creatividad, complejidad y representatividad de estos temas atrajeron la atención occidental en ese momento. Liu Hui tiene pensamiento rápido y métodos flexibles. Promovió el razonamiento y la intuición. Fue la primera persona en China que abogó explícitamente por el uso del razonamiento lógico para demostrar proposiciones matemáticas. Logros personales Los logros matemáticos de Liu Hui se pueden dividir aproximadamente en dos aspectos: primero, clasificar el antiguo sistema matemático chino y sentar sus bases teóricas, que están plasmadas en los "Nueve capítulos sobre notas aritméticas". De hecho, ha formado un sistema teórico relativamente completo: la teoría del sistema numérico ① expone la división general, la reducción, cuatro operaciones aritméticas y las reglas de simplificación de fracciones complejas del mismo número y de diferentes números en las notas de la prescripción, comienza desde la prescripción; Discutió la existencia de raíces irracionales en el sentido infinito, introdujo nuevos números y creó un método de aproximación infinita de raíces irracionales con decimales. (2) En términos de teoría del cálculo, primero dio una definición clara de tasa y, basándose en las tres operaciones básicas de multiplicación y división, estableció una base teórica unificada para las operaciones de números y fórmulas. También utilizó la tasa para definir la "ecuación" en las matemáticas chinas antiguas, que es la matriz aumentada de ecuaciones lineales en las matemáticas modernas. Comentarios de Liu Hui ③ En la teoría de Pitágoras, demostró los principios de cálculo del teorema de Pitágoras y las soluciones de Pitágoras una por una, estableció la teoría de formas pitagóricas similares y desarrolló la métrica de Pitágoras. El análisis de gráficos típicos formó una teoría de similitud con. Características chinas. La teoría del área y el volumen propone el principio de Liu Hui utilizando el principio de complementación, la deficiencia del complemento y el método límite de "corte de círculos" para resolver los problemas de cálculo del área y el volumen de diversas formas y cuerpos geométricos. El valor teórico de estos aspectos todavía brilla. En segundo lugar, presente sus propias ideas sobre la base de la herencia.
Este aspecto se refleja principalmente en las siguientes innovaciones representativas: ① ¿Circuncisión y pi que escribió en "Nueve capítulos de aritmética"? En las notas sobre el campo del círculo, se demuestra la fórmula precisa para el área de un círculo utilizando la técnica de la secante y se proporciona un método científico para calcular pi. Primero cortó el círculo del hexágono inscrito en el círculo. Cada vez que el número de lados se duplicaba, calculó el área de 192 polígonos, π = 157/50 = 3,14, y luego calculó el área de 3072 polígonos. π = 3927/1250 = 3,650. (2) ¿El principio de Liu Hui en "Nueve capítulos de aritmética"? En las notas de Yang Emashu, cuando utilizó la división infinita para resolver el volumen de un cono, propuso el principio de Liu Hui para calcular el volumen de un poliedro. "Mou He Square Cover" dijo que en las notas de "Nueve capítulos sobre círculos abiertos aritméticos", señaló la inexactitud de la fórmula V=9D3/16 (D es el diámetro de la bola) e introdujo el famoso modelo geométrico " Cubierta cuadrada Mou He ". "Cubierta cuadrada Mou He" se refiere a la intersección de dos cilindros inscritos con ejes mutuamente perpendiculares. En las notas de "Nueve capítulos sobre técnicas de ecuaciones aritméticas", propuso una nueva forma de entender las ecuaciones lineales y aplicó la idea del algoritmo de razón. Propuso el método de diferencia de gravedad en su libro "Sutra del cálculo de la isla" y utilizó métodos como tablas de peso, conexiones de cables y momentos acumulativos para medir la altura y la distancia. También utilizó el método de "derivación análoga" para desarrollar la tecnología de diferencia de gravedad de dos observaciones a "tres observaciones" y "cuatro observaciones". En el siglo VII, la India y Europa sólo comenzaron a estudiar la cuestión de dos observaciones en los siglos XV y XVI. El trabajo de Liu Hui no sólo tuvo un profundo impacto en el desarrollo de las matemáticas chinas antiguas, sino que también estableció una elevada posición histórica en la historia de las matemáticas mundiales. En vista de la gran contribución de Liu Hui, muchos libros lo llaman "Newton en la historia de las matemáticas chinas". Introducción a obras representativas: Su obra representativa "Nueve capítulos sobre anotaciones aritméticas" es una anotación del libro "Nueve capítulos sobre aritmética". "Nueve capítulos sobre aritmética" es uno de los tratados matemáticos más antiguos de China y fue escrito durante la dinastía Han Occidental. La realización de este libro pasó por un proceso histórico. Algunos de los diversos problemas matemáticos recopilados en el libro circularon en la época anterior a la dinastía Qin. Después de un largo período de eliminación y modificación por parte de muchas personas, finalmente fueron compilados por matemáticos de la dinastía Han Occidental. El contenido de la versión final que circula hoy se formó antes de la dinastía Han del Este. "Nueve capítulos de aritmética" es la obra matemática clásica más importante de China. Su finalización sentó las bases para el desarrollo de las matemáticas chinas antiguas y ocupa una posición extremadamente importante en la historia de las matemáticas chinas. La versión actual de Nine Chapters Arithmetic * * * recopila 246 problemas parafraseados y soluciones a varios problemas, pertenecientes a nueve capítulos, a saber, Tian Fang, Xiaomi, Decline, Shaoguang, Shanggong, Average Loss, Inadequate Income, Equation y Bi Dagoras. La aparición de Nueve Capítulos sobre Aritmética es el resultado del desarrollo social y la acumulación a largo plazo de conocimientos matemáticos, y reúne los frutos del trabajo de los matemáticos en diferentes períodos. Liu Hui, un matemático durante el período de los Tres Reinos, dijo: "El duque de Zhou usó nueve números para hacer rituales, y nueve capítulos son suficientes... Zhang Cang, marqués de Beiping en la dinastía Han, Cheng Geng Shouchang, y Los viejos agricultores eran todos buenos adivinos. Cang et al. tienen escritos antiguos. Los restos se llaman eliminaciones y adiciones. Por lo tanto, el propósito de la escuela puede ser diferente o diferente al de los antiguos, y la teoría es más reciente ". Los resultados de la investigación de Hui, "Nueve capítulos de aritmética" se originaron a partir de los "Nueve números" de "Zhou Gong". "Nueve capítulos de aritmética" fue compilado por Zhang Cang y Geng Shouchang de la dinastía Han Occidental sobre la base de heredar el legado de. la dinastía anterior a Qin Contiene una gran cantidad de contenidos complementarios de la dinastía Han Occidental. Según documentos históricos y reliquias culturales desenterradas, lo que dijo Liu Hui es creíble. Los diversos algoritmos contenidos en "Nueve capítulos de aritmética" son todos suplementos y correcciones basados en las matemáticas transmitidas por matemáticos de las dinastías Pre-Qin y Han para satisfacer las necesidades de la época. Según la investigación de Liu Hui, Zhang Cang y Geng Shouchang fueron los principales matemáticos involucrados en el trabajo de revisión. Según "Registros históricos: biografía del primer ministro Zhang", Zhang Cang (alrededor del 250 a. C. al 152 a. C.) experimentó la dinastía Qin y la dinastía Han. En el sexto año del reinado del emperador Gaodi (2065438 a. C. + 0 a. C.), fue nombrado Emperador de Peiping por su meritorio servicio en la conquista del té tibetano. "Desde la dinastía Qin, ha sido incluido en la historia y mañana escribirá un libro. Y es bueno usando calendarios aritméticos". También "escribió 18 libros que explican las leyes del yin y el yang". Se desconoce el nacimiento de Geng Shouchang. Cuando el emperador Xuan, el emperador de la dinastía Han, era funcionario, se convirtió en un granjero de alto nivel. "Calculó con amabilidad y fue capaz de hacer negocios con utilitarismo" y fue favorecido por el emperador (ver "Hanshu·Foodie Records). "). Defendió la teoría de Hun Tian en astronomía, y en el segundo año de Ganlu (52 a. C.) escribió "Medición de los fenómenos celestes con un instrumento redondo, flores y la luna" (ver "Libro de la dinastía Han posterior"). Zhang Cang y Geng Shouchang eran matemáticos famosos y ocupaban altos cargos. Naturalmente, tuvieron que presidir la revisión de la aritmética heredada del período anterior a Qin. Según los registros de Liu Hui, los "Nueve capítulos de aritmética" que anotó fueron finalmente editados por Geng Shouchang. Creemos que el momento en que Geng Shouchang editó "Nueve capítulos de aritmética" puede determinarse como el momento en que se completó este libro. Influencia de la obra "Nueve capítulos de aritmética" es un libro de texto oficial de matemáticas compilado por el estado y tuvo una gran influencia en el desarrollo de las matemáticas en la dinastía Han. "Guangyun" tiene cuatro capítulos, a saber, "Nueve capítulos", que fueron practicados por Xu Shang, Du Zhi, Wu, Wang Can, etc. en la dinastía Han. Está registrado en "La biografía de Ma Yuan" en la dinastía Han. Dinastía (alrededor de 70 ~ 141) como "Erudito y talentoso, es bueno en aritmética en nueve capítulos". Además, también hay registros en "Nueve capítulos sobre aritmética" escritos por Zheng Xuan (127 ~ 200), Liu Hong y otros. Se puede ver que este libro era un libro de texto importante para aprender matemáticas en ese momento. La inscripción en una placa de cobre en el segundo año de Guanghe de la dinastía Han del Este (179) estipula: "Da Sinong tomó las letras de los cinco sellos (¿138?)... Muchos estados se llaman cubos de bronce, y se les llama oblicuamente. Según el calendario de Huang Zhong, "Nueve capítulos aritméticos" La longitud, la longitud, el peso y el tamaño son los mismos en todo el mundo". Esto muestra que el libro no solo tuvo una amplia circulación durante la dinastía Han del Este, sino también que las matemáticas Los problemas involucrados en el desarrollo de pesos y medidas se basaron en los algoritmos del libro. Xu Shang y Du Zhi fueron probablemente los primeros matemáticos en estudiar el Clásico de los Nueve Capítulos después de su escritura.
Xu Shang y Du Zhi fueron matemáticos de finales de la dinastía Han Occidental. La "Historia literaria" de Han Shu registra 26 volúmenes de "Aritmética de Xu Shang" y 16 volúmenes de "Aritmética de Du Zhi". Estos dos libros fueron escritos por Yin Xian antes de revisar sus trabajos matemáticos en el tercer año del emperador Cheng de la dinastía Han (26 a. C.). La fecha de redacción de las obras de Xu Shang y Du Zhi no está lejos del momento en que Geng Shouchang eliminó y complementó "Nueve capítulos de aritmética". Sus trabajos matemáticos deben completarse sobre la base del estudio de los nueve capítulos de la aritmética. Los "Nueve capítulos sobre aritmética" de Liu Hui no sólo ocupan una posición importante en la historia de las matemáticas chinas, sino que también hicieron una contribución importante al desarrollo de las matemáticas mundiales. La teoría de fracciones y su algoritmo completo, el algoritmo de proporción y asignación proporcional, el algoritmo de área y volumen y las soluciones a diversos problemas aplicados se describen en detalle en capítulos como campo cuadrado, mijo, decadencia, mérito comercial e incluso pérdida. El método de la raíz, pérdidas y ganancias (método de la doble hipótesis), el concepto de números positivos y negativos, la solución de ecuaciones lineales simultáneas y el enlace de números enteros en capítulos como "Shaoguang", "Pérdidas y ganancias", "Ecuaciones" y " "Pitagórico", la fórmula general de la cuerda común, etc., son logros destacados en la historia de las matemáticas mundiales. "Jiu Zhang Shu Shu Zhuan" tiene anotaciones de Liu Hui y anotaciones de Tang Li. Liu Hui fue un destacado matemático de la antigua China. Durante el período de los Tres Reinos, vivió en el estado de Wei. Con respecto al sistema de pesos y medidas de las dinastías pasadas, "Sui Calligraphy Chronicles" cita la anotación de Shang que dice "Chen Weizhu durante cuatro años (263), Liu Hui anotó nueve capítulos. Su vida no puede examinarse en detalle". Las "Anotaciones de nueve capítulos" de Liu Hui no solo lograron resultados importantes al clasificar el antiguo sistema matemático y mejorar la antigua teoría del cálculo, sino que también presentaron una variedad de ideas e invenciones. Liu Hui hizo destacadas contribuciones en aritmética, álgebra y geometría. Por ejemplo, utilizó la teoría de proporciones para establecer una base teórica unificada para números y fórmulas, aplicó el principio de complementariedad entrante y saliente y el método límite para resolver muchos problemas de área y volumen, y estableció una teoría única de área y volumen. Utilizó nueve capítulos para demostrar rigurosamente muchas conclusiones. Algunos de sus métodos han inspirado enormemente a las generaciones posteriores e incluso a las matemáticas actuales. Según el sexto capítulo del libro histórico "Dieciséis capítulos del Libro de Jin": Wei Jingyuan tenía cuatro años y la anotación "Nueve capítulos" de Liu Hui decía: Cuando Wang Mang era joven, los pies de Liu Xin eran más débiles que los pies actuales. , nueve pulgadas y cinco centímetros más profundo que los pies de Wei, es decir, Xun Xu El pie en cuestión mide cuatro pies y medio de largo; Chen Wei permaneció en Wang Jingyuan durante cuatro años. Liu Hui comentó sobre "Nueve capítulos del mérito empresarial" y dijo: "Las grandes empresas de hoy son populares entre los agricultores. El diámetro es de un pie, tres pulgadas y cinco centavos, la profundidad es de un pie. y el área es mil cuatrocientos cuarenta y uno ". Tres décimas de pulgada. La pezuña de cobre de Wang Mang tiene nueve pulgadas y cinco centímetros de profundidad y un pie, tres pulgadas, seis minutos, ocho centímetros y siete milímetros de diámetro. Basado en la técnica del emblema, es muy extraño recibir nueve cubos y siete litros en cuatro partes." "Libro de canciones·Volumen·Shi San Zhi San": Hu Ming y Liu Xin de la dinastía Han probablemente malinterpretaron sus números, lo cual fue considerado un defecto dramático. Los hilos de "Dry Elephant" están arreglados, y en el turno de la "escena inicial" del domingo, los bandidos dicen que el clima es impredecible, la multiplicación y la división están retorcidas y las familias están destruidas. Zheng Xuan, Kan Ze, Wang Fan, Liu Hui y los estudiantes de artes liberales integrales son aún más escasos.